Well-posedness for a Higher-order Benjamin-ono Equation

نویسنده

  • FELIPE LINARES
چکیده

In this paper we prove that the initial value problem associated to the following higher-order Benjamin-Ono equation ∂tv − bH∂ xv + a∂ xv = cv∂xv − d∂x(vH∂xv + H(v∂xv)), where x, t ∈ R, v is a real-valued function, H is the Hilbert transform, a ∈ R, b, c and d are positive constants, is locally well-posed for initial data v(0) = v0 ∈ H(R), s ≥ 2 or v0 ∈ H(R) ∩ L(R; xdx), k ∈ Z+, k ≥ 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness in H for the (generalized) Benjamin-Ono equation on the circle

We prove the local well posedness of the Benjamin-Ono equation and the generalized Benjamin-Ono equation in H(T). This leads to a global wellposedness result in H(T) for the Benjamin-Ono equation.

متن کامل

Global well-posedness and limit behavior for a higher-order Benjamin-Ono equation

In this paper, we prove that the Cauchy problem associated to the following higher-order Benjamin-Ono equation (0.1) ∂tv − bH∂ 2 x v − aǫ∂ x v = cv∂xv − dǫ∂x(vH∂xv +H(v∂xv)), is globally well-posed in the energy space H(R). Moreover, we study the limit behavior when the small positive parameter ǫ tends to zero and show that, under a condition on the coefficients a, b, c and d, the solution vǫ t...

متن کامل

On the Cauchy problem for higher-order nonlinear dispersive equations

We study the higher-order nonlinear dispersive equation ∂tu+ ∂ 2j+1 x u = ∑ 0≤j1+j2≤2j aj1,j2∂ j1 x u∂ j2 x u, x, t ∈ R. where u is a real(or complex-) valued function. We show that the associated initial value problem is well posed in weighted Besov and Sobolev spaces for small initial data. We also prove ill-posedness results when a0,k 6= 0 for some k > j, in the sense that this equation cann...

متن کامل

. A P ] 2 1 O ct 2 00 2 LOCAL WELL - POSEDNESS FOR DISPERSION GENERALIZED BENJAMIN - ONO EQUATIONS

In this paper we study local well-posedness in the energy space for a family of dispersive equations that can be seen as dispersive " interpolations " between the KdV and the Benjamin-Ono equation.

متن کامل

Well-posed Solutions of the Third Order Benjamin–Ono Equation in Weighted Sobolev Spaces

Here we continue the study of the initial value problem for the third order Benjamin-Ono equation in the weighted Sobolev spaces Hs γ = H s⋂L2γ , where s > 3, γ ≥ 0. The result is the proof of well-posedness of the afore mentioned problem in Hs γ , s > 3, γ ∈ [0, 1]. The proof involves the use of parabolic regularization, the Riesz-Thorin interpolation theorem and the construction technique of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010